Sevoflurane postconditioning attenuates cardiomyocyte hypoxia/reoxygenation injury via restoring mitochondrial morphology
نویسندگان
چکیده
BACKGROUND Anesthetic postconditioning is a cellular protective approach whereby exposure to a volatile anesthetic renders a tissue more resistant to subsequent ischemic/reperfusion event. Sevoflurane postconditioning (SPostC) has been shown to exert cardioprotection against ischemia/reperfusion injury, but the underlying mechanism is unclear. We hypothesized that SPostC protects cardiomyocytes against hypoxia/reoxygenation (H/R) injury by maintaining/restoring mitochondrial morphological integrity, a critical determinant of cell fate. METHODS Primary cultures of neonatal rat cardiomyocytes (NCMs) were subjected to H/R injury (3 h of hypoxia followed by 3 h reoxygenation). Intervention with SPostC (2.4% sevoflurane) was administered for 15 min upon the onset of reoxygenation. Cell viability, Lactate dehydrogenase (LDH) level, cell death, mitochondrial morphology, mitochondrial membrane potential and mitochondrial permeability transition pore (mPTP) opening were assessed after intervention. Mitochondrial fusion and fission regulating proteins (Drp1, Fis1, Mfn1, Mfn2 and Opa1) were assessed by immunofluorescence staining and western blotting was performed to determine the level of protein expression. RESULTS Cardiomyocyte H/R injury resulted in significant increases in LDH release and cell death that were concomitant with reduced cell viability and reduced mitochondrial interconnectivity (mean area/perimeter ratio) and mitochondrial elongation, and with reduced mitochondrial membrane potential and increased mPTP opening. All the above changes were significantly attenuated by SPostC. Furthermore, H/R resulted in significant reductions in mitochondrial fusion proteins Mfn1, Mfn2 and Opa1 and significant enhancement of fission proteins Drp1 and Fis1. SPostC significantly enhanced Mfn2 and Opa1 and reduced Drp1, without significant impact on Mfn1 and Fis1. CONCLUSIONS Sevoflurane postconditioning attenuates cardiomyocytes hypoxia/reoxygenation injury (HRI) by restoring mitochondrial fusion/fission balance and morphology.
منابع مشابه
Silymarin component 2,3-dehydrosilybin attenuates cardiomyocyte damage following hypoxia/reoxygenation by limiting oxidative stress.
Ischemic postconditioning and remote conditioning are potentially useful tools for protecting ischemic myocardium. This study tested the hypothesis that 2,3-dehydrosilybin (DHS), a flavonolignan component of Silybum marianum, could attenuate cardiomyocyte damage following hypoxia/reoxygenation by decreasing the generation of reactive oxygen species (ROS). After 5-6 days of cell culture in normo...
متن کاملHypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2+ overload.
We have shown that intermittent interruption of immediate reflow at reperfusion (i.e., postconditioning) reduces infarct size in in vivo models after ischemia. Cardioprotection of postconditioning has been associated with attenuation of neutrophil-related events. However, it is unknown whether postconditioning before reoxygenation after hypoxia in cultured cardiomyocytes in the absence of neutr...
متن کاملClematichinenoside (AR) Attenuates Hypoxia/Reoxygenation-Induced H9c2 Cardiomyocyte Apoptosis via a Mitochondria-Mediated Signaling Pathway.
Mitochondria-mediated cardiomyocyte apoptosis is involved in myocardial ischemia/reperfusion (MI/R) injury. Clematichinenoside (AR) is a triterpenoid saponin isolated from the roots of Clematis chinensis with antioxidant and anti-inflammatory cardioprotection effects against MI/R injury, yet the anti-apoptotic effect and underlying mechanisms of AR in MI/R injury remain unclear. We hypothesize ...
متن کاملSevoflurane Postconditioning Protects Rat Hearts against Ischemia-Reperfusion Injury via the Activation of PI3K/AKT/mTOR Signaling
Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway plays a key role in myocardial ischemia-reperfusion (I/R) injury. Mammalian target of rapamycin (mTOR), a downstream target of PI3K/AKT signaling, is necessary and sufficient to protect the heart from I/R injury. Inhaled anesthetic sevoflurane is widely used in cardiac surgeries because its induction and recovery are faster and...
متن کاملSignaling pathways involved in desflurane-induced postconditioning in human atrial myocardium in vitro.
BACKGROUND Isoflurane and sevoflurane have been shown to elicit myocardial postconditioning, but the effect of desflurane remain unknown. The authors studied the mechanisms involved in desflurane-induced myocardial postconditioning. METHODS Contracting isolated human right atrial trabeculae (34 degrees C, stimulation frequency 1 Hz) were exposed to 30-min hypoxia followed by 60-min reoxygenat...
متن کامل